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A critical bottleneck exists in Autonomous Underwater Vehicle (AUV)
design and development. It is tremendously difficult to observe, communicate
with and test underwater robots, because they operate in a remote and hazardous
environment where physical dynamics and sensing modalities are
counterintuitive.

An underwater virtual world can comprehensively model all salient
functional characteristics of the real world in real time. This virtual world is
designed from the perspective of the robot, enabling realistic AUV evaluation
and testing in the laboratory. Three-dimensional real-time computer graphics
are our window into that virtual world.

Visualization of robot interactions within a virtual world permits
sophisticated analyses of robot performance that are otherwise unavailable.
Sonar visualization permits researchers to accurately “look over the robot’s
shoulder" or even "see through the robot’s eyes" to intuitively understand
sensor-environment interactions. Extending the theoretical derivation of a set of
six-degree-of-freedom hydrodynamics equations has provided a fully general
physics-based model capable of producing highly non-linear yet experimentally-
verifiable response in real time.

Distribution of underwater virtual world components enables scalability
and real-time response. The IEEE Distributed Interactive Simulation (DIS)
protocol is used for compatible live interaction with other virtual worlds.

Network connections allow remote access, demonstrated via Multicast Backbone
(MBone) audio and video collaboration with researchers at remote locations.
Integrating the World-Wide Web allows rapid access to resources distributed

across the Internet.



This dissertation presents the frontier of 3D real-time graphics to support
underwater robotics, scientific ocean exploration, sonar visualization and

worldwide collaboration.
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ABSTRACT

A critical bottleneck exists in Autonomous Underwater Vehicle (AUV)
design and development. It is tremendously difficult to observe, communicate
with and test underwater robots, because they operate in a remote and hazardous
environment where physical dynamics and sensing modalities are
counterintuitive.

An underwater virtual world can comprehensively model all salient
functional characteristics of the real world in real time. This virtual world is
designed from the perspective of the robot, enabling realistic AUV evaluation
and testing in the laboratory. Three-dimensional real-time computer graphics
are our window into that virtual world.

Visualization of robot interactions within a virtual world permits
sophisticated analyses of robot performance that are otherwise unavailable.
Sonar visualization permits researchers to accurately "look over the robot’s
shoulder" or even "see through the robot’s eyes" to intuitively understand
sensor-environment interactions. Extending the theoretical derivation of a set of
six-degree-of-freedom hydrodynamics equations has provided a fully general
physics-based model capable of producing highly non-linear yet experimentally-
verifiable response in real time.

Distribution of underwater virtual world components enables scalability
and real-time response. The IEEE Distributed Interactive Simulation (DIS)
protocol is used for compatible live interaction with other virtual worlds.

Network connections allow remote access, demonstrated via Multicast Backbone
(MBone) audio and video collaboration with researchers at remote locations.
Integrating the World-Wide Web allows rapid access to resources distributed
across the Internet.

This dissertation presents the frontier of 3D real-time graphics to support
underwater robotics, scientific ocean exploration, sonar visualization and
worldwide collaboration.
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l. A VIRTUAL WORLD FOR AN AUTONOMOUS UNDERWATER VEHICLE

A. INTRODUCTION

A critical bottleneck exists in Autonomous Underwater Vehicle (AUV) design
and development. It is tremendously difficult to observe, communicate with and test
underwater robots, because they operate in a remote and hazardous environment where
physical dynamics and sensing modalities are counterintuitive. An underwater virtual
world can comprehensively model all necessary functional characteristics of the real
world in real time. This virtual world is designed from the perspective of the robot,
enabling realistic AUV evaluation and testing in the laboratory. 3D real-time graphics
are our window into the virtual world. A networked architecture enables multiple
world components to operate collectively in real time, and also permits world-wide
observation and collaboration with other scientists interested in the robot and virtual
world. This architecture was first proposed in (Brutzman 92d).

This dissertation develops and describes the software architecture of an
underwater virtual world for an autonomous underwater robot. Multiple component
models provide interactive real-time response for robot and human users. Theoretical
development stresses a scalable distributed network approach, interoperability between
models, physics-based reproduction of real-world response, and compatibility with
open systems approaches. Implementation of the underwater virtual world and
autonomous underwater robot are documented in a companion software reference

(Brutzman 94e).

B. MOTIVATION
Underwater robots are normally called Autonomous Underwater Vehicles
(AUVs), not because they are intended to carry people but rather because they are

designed to intelligently and independently convey sensors and payloads. AUVsS must



accomplish complex tasks and diverse missions while maintaining stable physical
control with six spatial degrees of freedom. Little or no communication with distant
human supervisors is possible. When compared to indoor, ground, airborne or space
environments, the underwater domain typically imposes the most restrictive physical
control and sensor limitations upon a robot. Underwater robot design requirements
therefore motivate this examination. Considerations and conclusions remain pertinent
as worst-case examples relative to other environments.

A large gap exists between the projections of theory and the actual practice of
underwater robot design. Despite a large number of remotely operated submersibles
and a rich field of autonomous robot research results (lyengar 90a, 90b), few AUVs
exist and their capabilities are limited. Cost, inaccessibility and scope of AUV design
restrict the number and reach of players involved. Interactions and interdependencies
between hardware and software component problems are poorly understood. Testing
is difficult, tedious, infrequent and potentially hazardous. Meaningful evaluation of
results is hampered by overall problem complexity, sensor inadequacies and human
inability to directly observe the robam situ. Potential loss of an autonomous
underwater robot is generally intolerable due to tremendous investment in time and
resources, likelihood that any failure will become catastrophic and difficulty of
recovery.

Underwater robot progress has been slow and painstaking for many reasons. By
necessity most research is performed piecemeal and incrementally. For example, a
narrow problem might be identified as suitable for solution by a particular artificial
intelligence (Al) paradigm and then examined in great detail. Conjectures and theories
are used to create an implementation which is tested by building a model or simulation
specifically suited to the problem in question. Test success or failure is used to
interpret validity of conclusions. Unfortunately, integration of the design process or
even final results into a working robot is often difficult or impossible. Lack of

integrated testing prevents complete verification of conclusions.



AUV design must provide autonomy, stability and reliability with little tolerance
for error. Control systems require particular attention since closed-form solutions for
many hydrodynamics control issues are unknown. In addition, Al methodologies are
essential for many critical robot software components, but the interaction complexity
and emergent behavior of multiple interacting Al processes is poorly understood,
rarely tested and impossible to formally specify (Shank 91). Better approaches are
needed to support coordinated research, design and implementation of underwater
robots.

Despite these many handicaps, the numerous challenges of operating in the
underwater environment force designers to build robots that are truly robust,
autonomous, mobile and stable. This fits well with a motivating philosophy of

Hans Moravec (Moravec 83, 88):

.. solving the day to day problems of developing a mobile organism steers one in
the direction of general intelligence... Mobile robotics may or may not be the
fastest way to arrive at general human competence in machines, but | believe it
is one of the surest roads. (Moravec 83)



OBJECTIVES

This dissertation addresses the following research questions:

What is the software architecture required to build an underwater virtual world
for an autonomous underwater vehicle?

How can an underwater robot be connected to a virtual world so seamlessly that
operation in the real world or a virtual world is transparent to the robot?

What previous work in robotics, simulation, 3D interactive computer graphics,
hydrodynamics, networking and sonar visualization are pertinent to construction
of an underwater virtual world?

What are the functional specifications of a prototypical AUV, and what are the
functional specifications of robot interactions with the surrounding environment?

How can 3D real-time interactive computer graphics support wide-scale general
access to virtual worlds? Specifically, how can computer graphics be used to
build windows into an underwater virtual world that are responsive, accurate,
distributable, represent objects in openly standardized formats, and provide
portability to multiple computer architectures?

What is the structure and derivation for an accurate six degree-of-freedom
underwater rigid body hydrodynamics model? The model must precisely
reproduce vehicle physical response in real time, while responding to modeled
ocean currents and control orders from the vehicle itself. The hydrodynamics
model must be general, verifiable, parameterizable for other vehicles, and
suitable for distributed simulation. Such a model is highly complex due to
multiple interacting effects coupled between all six degrees of freedom.

What are the principal network software components needed to build a virtual
world that can scale up to very large numbers of interacting models, datasets,
information streams and users? How can these network components provide
interactive real-time response for multiple low- and high-bandwidth information
streams over local and global communications networks?

Sonar is the most effective detection sensor used by underwater vehicles.
Sonar parameters pertinent to visualization and rendering include sound speed
profile (SSP), highly-variable sound wave path propagation, and sound pressure
level (SPL) attenuation. How can a general sonar model be networked to
provide real-time response despite high computational complexity? How can
scientific visualization techniques be applied to outputs of the sonar model to
render numerous interacting physical effects varying in three spatial dimensions
and time?

How can these concepts be implemented in a working system?



D. DISSERTATION ORGANIZATION

The real world is a big place. Virtual worlds must also be comprehensive and
diverse if they are to permit credible reproductions of real world behavior. A variety
of architectural components are described in this dissertation. Ways to scale up and
arbitrarily extend the underwater virtual world to include very large numbers of users,
models and information resources are included throughout.

Chapter Il reviews related work in underwater robotics, robotics simulation,
underwater vehicle hydrodynamics, robot simulation, computer networking, and
scientific visualization of sonar models. Chapter Il provides precise problem
statements and solution overviews, both for the general dissertation topic as well as
individual virtual world components. Chapter IV presents the functional characteristics
of the NPS AUV, the underwater robot which has been networked with the underwater
virtual world. Chapter V describes the requirements and design decisions made in
building an object-oriented real-time interactive 3D computer graphics viewer.

Chapter VI derives novel extensions to an underwater vehicle hydrodynamics model
which permit real-time networked response, standardized nomenclature, suitability for
parameterized use by other underwater vehicles, and correctness both in cruise and
hover modes. Chapter VII identifies and examines the four network capabilities
necessary for scalable and globally distributable virtual worlds. Network
considerations include both tight and loose temporal coupling, low-bandwidth and
high-bandwidth information streams, audio, video, graphics, multimedia, posture
updates using the Distributed Interactive Simulation (DIS) protocol, and very large
numbers of connecting models and users. Chapter VIII outlines a general sonar
model, presents an example geometric sonar model, and describes how scientific
visualization techniques might be applied to render the large set of important
characteristic values which describe sonar behavior. Chapter IX presents experimental
results for the hydrodynamics model and network performance during distributed

exercises. Chapter X summarizes the many dissertation conclusions identified in



preceding chapters. An acronym appendix is provided for reader convenience. Finally
an accompanying video appendix documents performance of the NPS AUV operating
in the underwater virtual world and presents a variety of exercise scenarios.

The structure of the accompanying software reference (Brutzman 94e) parallels
the organization of this dissertation. All source code, support files and compiled
executable programs are also freely available via Internet access using anonymous file
transfer protocol (ftp) access. The software reference includes help files and source
code for archive installation, the NPS AUV robot execution level, 3D computer
graphics viewer, hydrodynamics, sonar modeling, networking, and use of the
World-Wide Web (WWW) and Multicast Backbone (MBone).



