Java DIS Class Library

(This is slightly out of date, but valuable none the less. DMcG, 5/12/97)

This is a collection of files that (partially) implement the Distributed Interactive Simulation (DIS) P1278.1 protocol in Java. A Java implementation has a number of advantages, such as cross-platform compatability and the prospect of using DIS in web browsers or interacting with VRML. The genesis of this project is an attempt to implement a VRML/DIS display in a web browser. For details on this project, see http://www.stl.nps.navy.mil/~brutzman.

Since Java is fairly new to a number of people, I’ll attempt to explain things here clearly enough for a Java novice to understand. This will make things a bit verbose for those familiar with the language.

DIS

The DIS protocol is used to simulate large forces interoperating in a single virtual world. Each simulator writes DIS packets to the network describing the state of the objects it is simulating; in turn, the simulator reads DIS packets from the wire that describe the state of objects maintained by other simulators. All this information is integrated in the simulator’s display such that all objects appear to be seamlessly interoperating. Entities in one simulator can see and interact with entities controlled by another simulator.

Problem Decomposition

While this package is likely to be used with a web browser and VRML(at least that was the initial objective(DIS can potentially be used in many other situations. So it makes sense to make the DIS portion cleanly separate from any other part of our current project, particularly any VRML or browser elements. Java makes this fairly easy to do through the use of packages, which create smaller namespaces. Packages are typically used to to isolate a numer of classes that implement a related task. The java.io package, for example, implements input/output functionality for the Java language. A class name in the java.io package won’t conflict with another class that has the same name in another package.

There is an internet convention for naming packages implemented by programmers that are not part of the standard Java class library: reverse the internet domain name of your company, then add a descriptive name on the end. Since NPS’s domain name is nps.navy.mil, our packages will be named mil.navy.nps.*.

The problem decomposition for this project was such that the DIS library actually has two packages, each representing a distinct problem area. The first involves the process of reading and decoding the DIS packets from the network interface; the second involves a framework for making use of the DIS packets. The first package is called mil.nps.navy.dis; the second mil.nps.navy.vworld. They are described further below.

Mil.navy.nps.dis Package

This package implements reading and writing to the network for DIS packets. Rather than attempt to document each and every class, I’ll instead concentrate on the concepts behind the class design. The comments in the source files give a reasonably good idea of what the classes are actually doing. For the most part, they are remarkably similar.

Each packet described in the P1278.1 spec can be implemented as a Java class. For example, the Entity State PDU (ESPDU) is described in the spec in part as follows:

ESPDU
Pdu Header�Protocol Version (8 bit enumeration)
Exercise ID (8 bit unsigned integer)
PDU Type (8 bit enumeration)
Protocol Family (8 bit enumeration)
Time Stamp (32 bit unsigned integer)
Length (16 bit unsigned integer)
Padding (16 bits unused)��Entity ID�Site (16 bit Unsigned Integer)
Application (16 bit unsigned integer)
Entity (16 bit unsigned integer)��

Java PDU classes are straightforward wrappers around this data. In this case, the ESPDU class would contain instance variables for the protocol version, packet length, and so on. The ESPDU class implements a standard interface for accessing and changing the instance variables.

An obvious opportunity for code reuse occurs here. It turns out that every DIS packet has the “PDU Header” information at the top, and many also use “Entity ID” information or other common blocks of data, such as position or velocity. So it makes sense to create objects that contain this information, and then either compose higher level objects, such as the ESPDU, from these objects, or use inheritance to increase code reuse. It further turns out that the “PDU Header” and “ESPDU” objects share many qualities as well. Both need to know how to read and write themselves to the network, for example, and clone (copy) themselves.

The fallout of these observations is a class inheritance structure that looks like this:

� EMBED Canvas ���

The top-level class, PduElement, is an abstract class that implements an interface. Each class that inherits from it must know how to:

Serialize
Deserialize
Determine its length (as written to the network)
Clone (copy) itself
Print debugging information on stdout

Serialization and deserialization are simply a process of writing the instance variables of the class objects to the network in the manner specified by the DIS standard. Elements take up a certain amount of space on the network, which may differ from the amount of space the object takes up in memory. An element knows how to make a copy of itself, and can print debugging information.

The Velocity and EntityID classes inherit directly from PduElement. PDU classes, however, have much
behavior that is common, but distinct from things such as the PduHeader; they can benefit from an abstract class of their own. As mentioned earlier, each PDU contains PDU header information. It makes sense, therefore, to place this information in the ProtocolDataUnit abstract class. This prevents having to re-implement this functionality in every instance of a PDU.

The concrete PDU classes, such as EntityStatePdu and FirePdu, inherit from the abstract ProtocolDataUnit class. Typically these classes are composed of one or more instances of PduElements, plus any unique information to that class.

The EntityStatePdu, for example, contains a count of the number of articulation parameters contained in the packet and a list of the actual articulation parameters. We implment this with a Java class that describes an articulation parameter and a Vector that contains the list of articulation class instances. (A Vector is a standard Java class that describes an ordered list of objects.) It is important to remember that the object hierarchy is distinct from the class hierarchy; the first is a has-a relationship, the second an is-a relationship.

The concrete PDU classes implement the various abstract methods defined in higher level abstract classes. The serialization and deserialization methods are at the heart of the PduElement classes, and are relatively straightforward. This is an example from the EntityStatePdu serialization method:

public void serialize(DataOutputStream outputStream)
{
super.serialize(outputStream);

try		// catch-all for any exceptions in writing to stream
 {
	entityID.serialize(outputStream);
	forceID.serialize(outputStream);
[...]
	outputStream.writeFloat(entityAccelerationX);
	outputStream.writeFloat(entityAccelerationY);
	outputStream.writeFloat(entityAccelerationZ);
[...]
}
catch(IOException ioException)
{
 throw new
	RuntimeException("Exception in EntityStatePdu. Error serializing unit.");
}

OutputStream, which is passed into the method, is a standard Java class; it is essentially a byte buffer with a number of methods wrapped around it to simplify I/O operations. We serialize our instance variables in the same order as that specified by the DIS standard. In this case, we first serialize the superclass, ProtocolDataUnit, which contains the header information. Then we write each of the instance variables to the buffer. Since the operation might fail, Java requires the failure exceptions to be handled. We don’t attempt to recover from the exception if we do fail, but rather simply terminate the program. If things are screwed up that badly, it’s unlikely we’ll be able to fix it. entityID and forceID are instance variables—actually objects that represent several instance variables. They are classes that inherit directly from PduElement, and therefore know how to serialize themselves without any assistance from us. They too write to the outputStream. EntityAccelerationX, Y, and Z are native Java instance variables--floats that represent the entity’s current acceleration. We use the outputStream’s methods to write these variables to the stream.

The deSerialize methods work in an analogous fashion.

As mentioned, the Java classes that represent PDU elements have an interface for accessing or changing instance variables. This is simply good programming practice; I’ve been burned too many times by the lack of this feature. So, to change the entityID, we have setEntityID and entityID methods, which set and retrieve the value for the instance variable called entityID.

There are a couple interesting aspects to this operation, since entityID is an object. The first is the possibility of an orphaned object. In C++ or Objective-C, the following operation might result in a memory leak:

public void setEntityID(EntityID pEnitityID)
{ entityID = pEntityID;}

If there is already an object entityID, this operation will orphan it; there will, probably, no longer be any valid pointers to the old version of entityID, and no way to free the memory or other resources held by the object. This is not a problem in Java. Garbage collection ensures that even if we do orphan an object, the memory will be recovered for use by the system.

The other interesting aspect is retrieval of the object. One might assume that this is easily done with the following:

public EntityID entityID()
{ return entityID;
}

The problem, again, is that entityID is an object. This will return a pointer (effectively) to a single instance of entityID. This means that whomever retrieved the object now has access to the internal state of the object that contains the entityID. The caller can change the value of entityID, and hence the value of EntityStatePdu, without going through the interface to EntityStatePdu—a violation of encapsulation.

The solution to this is to make a copy of the instance variable the caller requests, and return that, as follows:

public EntityID entityID()
{ return (EntityID)entityID.clone();
}

This creates a brand-new object that happens to have the same value as the instance variable, then returns it. If the caller modifies the entityID object it will have no effect on the EntityStatePDU that supplied it; encapsulation is preserved. The ubiquity of the clone operation was the reason it was specified in the abstract PduElement class.

Essentially, the whole of the DIS PDU classes are implemented using these simple concepts. Objects know how to serialize and deserialize themselves, and have accessor methods for each instance variable. Variable length lists are implemented as vectors that contain objects. That’s about it.

(In fact, this so simple that there are some interesting possibilities for making this even more general. This can be addressed as part of the “Dial-a-Protocol” effort.) The release notes and class listings define the currently implemented PDUs and PDU elements.

So far, there has been no discussion of the actual network code. The PDU classes know how to read and write from input and output streams, but how do they actually read from the network?

Java supports TCP/IP sockets, with some caveats. Therefore we can read and write packets to the network using the usual techniques. Java has a class for a DatagramPacket. We can serialize an instance of a PDU class fairly easily with something like the following:

espdu.serialize(dataOutputStream);
streamArray = outputStream.toByteArray();
dgramPacket = new DatagramPacket(outputStream.toByteArray(), outputStream.size(), dgramDest, 8242);
			
try
{
	dgramSocket.send(dgramPacket);
}
catch(IOException ioException)
{
	[Error handling]
}

A DataOutputStream (remember, essentially a wrapper of methods around a byte array) is used by the PDU to serialize its data into a valid PDU packet. We instantiate an instance of a datagram packet with the contents of the DataOutputStream, a socket number, and a datagram destination. Then we simply send the datagram packet through an instance of a socket.

The caveats for using sockets in Java are small, but fairly serious. Luckily, there are workarounds. First of all, the JDK 1.02 specification does not support multicast sockets. Official support does not appear until the Java 1.1 spec. There is an unofficial sun.net.MulticastSocket class, however, that does work. But not under Intel, where there is a byte-ordering bug. But there is a fix to that, too. See http://www.cdt.luth.se/~peppar/java/multicastWin32/ for details. The other problem is security. Applets running within a browser have certain restrictions on what they can do. One of the restrictions is opening a socket to a machine other than the machine that served up the applet. I think the way around this is to have the DIS applet served up from the local machine’s disk, rather than from a remote URL. The security manager is more lax about where the applet can connect to when the applet is not from a foreign source.

There are some interesting problems to be solved to read DIS packets from the network. First, some background. We need to read from the socket in a reasonably timely manner to prevent the loss of packets due to buffer overflow. On the other hand, the program making use of the DIS library might require some lengthy, non-determinate amount of time to draw to the screen, handle user input, and do other tasks.

A solution to this is to have a separate thread of execution handling network reads on the socket. Threads are essentially lightweight processes; they contain their own program counter and stack, but share access to the program’s global memory. Two threads can “simaltaneously” work within the same program, each proceeding as if it were the main path of execution. Java has language-level support for programming in threads, so this turns out to be fairly easy to implement.

The solution I picked was to closely couple a socket and a thread in a single object, the NetworkMonitor. The thread continously reads from the socket unless blocked by lack of input. Packets that it reads are buffered up in local storage until the main event loop of the program requests them. The NetworkMonitor class turns over all the packets that have been read, then starts filling up another buffer.

The thread object specifies a method in the NetworkMonitor object. That method simply loops without end, continously reading packets from the wire:

public void run()
{
	networkMonitor.readFromNetwork();
}

The readFromNetwork method’s heart boils down to this:

datagramSocket.receive(datagramPacket);			
synchronized(datagramBuffer)
{
	datagramBuffer.addElement(datagramPacket);
}

A datagram packet is read, then added to the buffer of datagrams that have arrived so far. The synchronized() statement prevents two threads from accessing the same data structure at once, possibly corrupting the internal state of the object.

Eventually the main program will ask for the PDUs. This is done in the receivedPdus() method by the main thread, as follows:

localDatagramBuffer = datagramBuffer;
newDatagramBuffer = new Vector();
synchronized(localDatagramBuffer)
{
	datagramBuffer = newDatagramBuffer;	
}

A new buffer is created, then access to the existing buffer is locked. This prevents the reader thread from adding new PDUs to the buffer while we’re in the process of taking it away. (Remember that this operation is being performed by the main thread, not the thread that is reading from the socket.) The new, empty buffer is put in its place and the reader thread begins to add PDUs to the new buffer.

The datagrams that have been read from the wire are, at this point, basically just byte arrays in the DIS format. They haven’t yet been promoted to full objects, such as the EntityStatePdu. This process is accomplished by the following code:

datagramEnumeration = localDatagramBuffer.elements();
while(datagramEnumeration.hasMoreElements())
{
 DatagramPacket		aDatagram =
		 (DatagramPacket)datagramEnumeration.nextElement();
 ProtocolDataUnit	aPdu;

 aPdu = ProtocolDataUnit.datagramToPdu(aDatagram);
 if(aPdu != null)
 pduBuffer.addElement(aPdu);
}

Each datagram in the buffer is promoted to a full-fledged object. Then the list of promoted PDUs is returned to the caller. The datagramToPdu method is simply calling the deSerialize() method on a PDU object of the correct type, and returning a PDU.

As far as the program making use of the PDU library is concerned, it simply periodically asks NetworkMonitor instance for PDU objects, and the NetworkMonitor class responds with a collection of all the PDUs that have arrived since the last time. There can be more than one NetworkMonitor instance, each perhaps listening on a unique unicast socket, or listening on a particular multicast address.

The rest of the code in the mil.navy.nps.dis package is fairly straightforward. There are a number of unsigned number classes--UnsignedInt, UnsignedShort, etc--since Java does not include these as native types or as objects. The unsigned numerics know how to serialize and deserialize themselves to the network.

Mil.navy.nps.vworld Package

The mil.navy.nps.dis package is strictly concerned with the mechanics of getting network packets into the form of objects, and providing the objects to the main program in a convienient and easy-to-use manner. There are a variety of ways that might it might be used. Typically, though, the DIS objects will need to be distributed to entities within a virtual world. That is the primary purpose of the mil.navy.nps.vworld package.

There are two primary classes in the package, Entity and EntityManager. Entity represents an object in the virtual world. Entities are updated by the incoming DIS objects. A new ESPDU, for example, carries position, velocity, and dead reckoning information that can modify the entity’s state in the virtual world. In our case, the entity object would also handle communication with the VRML world, so that the screen would be updated to reflect the new realities. (“The New Realities” would be a good name for a band.) So the Entity class also represents a handle into whatever display system you’re using.

The EntityManager class is a distribution system that relays DIS objects to their matching entity. The NetworkMonitor class simply collects all incoming packets, regardless of what entity they’re destined for. The EntityManager occasionally collects DIS objects from the network monitor, and sends each DIS object to the correct entity.

The entity a DIS object corresponds to is identified by the triplet (siteID, applicationID, entityID), which, by definition of the DIS standard, is unique for each entity.

The overall process is shown by the diagram below:

� EMBED Canvas ���

The EntityManager maintains a database of Entities, gets DIS objects from the NetworkMonitor, and distributes them to the correct entity. The entities, in turn are responsible for updating whatever display they are responsible for.

The entity database is implemented as a hash table, keyed by the EntityID triplet object of (siteID, applicationID, entityID). When a new ESPDU arrives the entityID object is extracted from the object, then used to look up and retrieve the correct Entity object. (This just uses a simple hash code on the entityID object.)

